Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Transl Med ; 22(1): 257, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461288

RESUMO

BACKGROUND: Neural Tube Defects (NTDs) are congenital malformations of the central nervous system resulting from the incomplete closure of the neural tube during early embryonic development. Neuroinflammation refers to the inflammatory response in the nervous system, typically resulting from damage to neural tissue. Immune-related processes have been identified in NTDs, however, the detailed relationship and underlying mechanisms between neuroinflammation and NTDs remain largely unclear. In this study, we utilized integrated multi-omics analysis to explore the role of neuroinflammation in NTDs and identify potential prenatal diagnostic markers using a murine model. METHODS: Nine public datasets from Gene Expression Omnibus (GEO) and ArrayExpress were mined using integrated multi-omics analysis to characterize the molecular landscape associated with neuroinflammation in NTDs. Special attention was given to the involvement of macrophages in neuroinflammation within amniotic fluid, as well as the dynamics of macrophage polarization and their interactions with neural cells at single-cell resolution. We also used qPCR assay to validate the key TFs and candidate prenatal diagnostic genes identified through the integrated analysis in a retinoic acid-induced NTDs mouse model. RESULTS: Our analysis indicated that neuroinflammation is a critical pathological feature of NTDs, regulated both transcriptionally and epigenetically within central nervous system tissues. Key alterations in gene expression and pathways highlighted the crucial role of STATs molecules in the JAK-STAT signaling pathway in regulating NTDs-associated neuroinflammation. Furthermore, single-cell resolution analysis revealed significant polarization of macrophages and their interaction with neural cells in amniotic fluid, underscoring their central role in mediating neuroinflammation associated with NTDs. Finally, we identified a set of six potential prenatal diagnostic genes, including FABP7, CRMP1, SCG3, SLC16A10, RNASE6 and RNASE1, which were subsequently validated in a murine NTDs model, indicating their promise as prospective markers for prenatal diagnosis of NTDs. CONCLUSIONS: Our study emphasizes the pivotal role of neuroinflammation in the progression of NTDs and underlines the potential of specific inflammatory and neural markers as novel prenatal diagnostic tools. These findings provide important clues for further understanding the underlying mechanisms between neuroinflammation and NTDs, and offer valuable insights for the future development of prenatal diagnostics.


Assuntos
Multiômica , Defeitos do Tubo Neural , Gravidez , Feminino , Animais , Camundongos , Doenças Neuroinflamatórias , Estudos Prospectivos , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/induzido quimicamente , Sistema Nervoso Central/patologia
2.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35617032

RESUMO

Long noncoding RNA (lncRNA) plays a crucial role in the pathogenesis of various diseases, including colorectal cancer (CRC). The gene mutations of adenomatous polyposis coli (APC) were found in most patients with CRC. They function as important inducers of tumorigenesis. Based on our microarray results, we identified a specific upregulated lncRNA in CRC (SURC). Further analysis showed that high SURC expression correlated with poorer disease-free survival and overall survival in patients with CRC. Furthermore, we found that mutated APC genes can promote the transcription of SURC by reducing the degradation of ß-catenin protein in CRC. Functional assays revealed that knockdown of SURC impaired CRC cell proliferation, colony formation, cell cycle, and tumor growth. Additionally, SURC promotes CCND2 expression by inhibiting the expression of miR-185-5p in CRC cells. In conclusion, we demonstrate that SURC is a specific upregulated lncRNA in CRC and the SURC/miR-185-5p/CCND2 axis may be targetable for CRC diagnosis and therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Mol Ther Oncolytics ; 23: 488-500, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34901391

RESUMO

Malignant ascites frequently occur in patients with advanced ovarian cancer at initial diagnosis, and in almost all cases of relapse, they are closely related to poor prognosis, chemoresistance, and metastasis. To date, effective management strategies have been limited. In this study, we aimed to investigate the effects of oncolytic adenovirus (OV) on malignant ascites in a mouse model of advanced ovarian cancer. The results suggested that OV conferred an effective ability to reduce ascites development and prolong overall survival. Further analysis of the ascitic immune microenvironment revealed that OV treatment promoted T cell infiltration, activation, and differentiation into the effector phenotype; reprogrammed macrophages toward the M1-like phenotype; and increased the ratios of both CD8+ T cells to CD4+ T cells and M1 to M2 macrophages. However, immunosuppressive factors such as PD-1, LAG-3, and Tregs emerged after treatment. Combination therapy including OV, CSF-1R inhibitor PLX3397, and anti-PD-1 remarkably delayed the progression of ascites, and combination therapy induced a greater extent of T cell infiltration, proliferation, and activation. This study provides experimental and theoretical evidence for oncolytic virus-based treatment of malignant ascites, which may further contribute to advanced ovarian cancer therapy.

4.
PLoS Genet ; 16(11): e1009159, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175846

RESUMO

Tumor metastasis is the major cause of poor prognosis and mortality in colorectal cancer (CRC). However, early diagnosis of highly metastatic CRC is currently difficult. In the present study, we screened for a novel biomarker, GDNF family receptor alpha 1 (GFRA1) based on the expression and methylation data in CRC patients from The Cancer Genome Altlas (TCGA), followed by further analysis of the correlation between the GFRA1 expression, methylation, and prognosis of patients. Our results show DNA hypomethylation-mediated upregulation of GFRA1 in invasive CRC, and it was found to be correlated with poor prognosis of CRC patients. Furthermore, GFRA1 methylation-modified sequences were found to have potential as methylation diagnostic markers of highly metastatic CRC. The targeted demethylation of GFRA1 by dCas9-TET1CD and gRNA promoted CRC metastasis in vivo and in vitro. Mechanistically, demethylation of GFRA1 induces epithelial-mesenchymal transition (EMT) by promoting AKT phosphorylation and increasing c-Jun expression in CRC cells. Collectively, our findings indicate that GFRA1 hypomethylation can promote CRC invasion via inducing EMT, and thus, GFRA1 methylation can be used as a biomarker for the early diagnosis of highly metastasis CRC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Neoplasias Pulmonares/genética , Animais , Proliferação de Células/genética , Estudos de Coortes , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Desmetilação do DNA , Metilação de DNA , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Invasividade Neoplásica/genética , Fosforilação/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA-Seq , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Cell Mol Med ; 24(1): 189-201, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578820

RESUMO

SARI (suppressor of AP-1, regulated by IFN) impaired tumour growth by promoting apoptosis and inhibiting cell proliferation and tumour angiogenesis in various cancers. However, the role of SARI in regulating tumour-associated inflammation microenvironment is still elusive. In our study, the colitis-dependent and -independent primary model were established in SARI deficiency mice and immuno-reconstructive mice to investigate the functional role of SARI in regulating tumour-associated inflammation microenvironment and primary colon cancer formation. The results have shown that SARI deficiency promotes colitis-associated cancer (CAC) development only in the presence of colon inflammation. SARI inhibited tumour-associated macrophages (TAM) infiltration in colon tissues, and SARI deficiency in bone marrow cells has no observed role in the promotion of intestinal tumorigenesis. Mechanism investigations indicated that SARI down-regulates p-STAT1 and STAT1 expression in colon cancer cells, following inhibition of MCP-1/CCR2 axis activation during CAC development. Inverse correlations between SARI expression and macrophage infiltration, MCP-1 expression and p-STAT1 expression were also demonstrated in colon malignant tissues. Collectively, our results prove the inhibition role of SARI in colon cancer formation through regulating TAM infiltration.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Quimiocina CCL2/metabolismo , Neoplasias Associadas a Colite/prevenção & controle , Colite/complicações , Neoplasias do Colo/prevenção & controle , Inflamação/fisiopatologia , Macrófagos Associados a Tumor/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Quimiocina CCL2/genética , Neoplasias Associadas a Colite/etiologia , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/patologia , Neoplasias do Colo/etiologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Receptores CCR2/genética , Receptores CCR2/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Carcinogenesis ; 41(2): 235-244, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31802101

RESUMO

DNA methylation plays a crucial role in the pathogenesis of various diseases, including colorectal cancer (CRC). However, the global and temporal DNA methylation pattern during initiation and progression of colitis-associated cancer (CAC) are still unknown, including the potential therapeutic strategy of targeting methylation for CAC. In the present study, the global DNA methylation pattern was determined at different time points during CAC using DNA methylation sequencing, followed by the Starburst plot integrating alterations and potential functional prediction analysis. After demonstrating the regulatory role of DNA methyltransferases (DNMTs) on the expression of hub-genes in CRC cells, DNMT inhibitors were administered to treat CAC mice. Our results indicated that 811 genes were hypermethylated at different time points during initiation and progression of CAC. Genes that were downregulated and hypermethylated during CAC, including hub-genes BAD and inositol polyphosphate phosphatase-like 1 (INPPL1), were involved in MAPK signaling pathways, kit receptor signaling pathways, apoptosis and EGF/EGFR signaling pathways. Upregulated DNMTs (DNMT1, DNMT3A and DNMT3B) mediated downregulation and hypermethylation of BAD and INPPL1 in CAC and CRC cells. Low doses of DNMT inhibitors (decitabine (DAC) and azacitidine (AZA)) exerted efficient antitumor effects in CAC, accompanied with upregulation of BAD and INPPL1 expression, and apoptosis induction. In summary, the present study demonstrates the temporal DNA methylation pattern during CAC and provides a novel therapeutic strategy for treating this disease.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Colite/patologia , Neoplasias Colorretais/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Azacitidina/administração & dosagem , Azoximetano/toxicidade , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/diagnóstico por imagem , Colo/diagnóstico por imagem , Colo/efeitos dos fármacos , Colo/patologia , Colonoscopia , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Decitabina/administração & dosagem , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Humanos , Mucosa Intestinal/diagnóstico por imagem , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Terapia de Alvo Molecular/métodos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Regulação para Cima , Proteína de Morte Celular Associada a bcl/genética
8.
Mucosal Immunol ; 12(5): 1130-1140, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31182817

RESUMO

SARI functions as a suppressor of colon cancer and predicts survival of colon cancer patients, but its role in regulating colitis has not been characterized. Here we show that SARI-/- mice were highly susceptible to colitis, which was associated with enhanced macrophage infiltration and inflammatory cytokine production. Bone marrow reconstitution experiments demonstrated that disease susceptibility was not dependent on the deficiency of SARI in the immune compartment but on the protective role of SARI in the intestinal epithelial cells (IECs). Furthermore, SARI deficiency enhanced Chemokine (C-C motif) Ligand 2 (CCL2) production and knockout of CCR2 blocks the promoting role of SARI deficiency on colitis. Mechanistically, SARI directly targets and promotes signal transducer and activator of transcription 1 (STAT1) degradation in IECs, followed by persistent inactivation of the STAT1/CCL2 transcription complex. In summary, SARI attenuated colitis in mice by impairing colitis-dependent STAT1/CCL2 transcriptional activation in IECs and macrophages recruitment in colon tissue.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Colite/etiologia , Colite/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Biomarcadores , Colite/diagnóstico por imagem , Colite/patologia , Colonoscópios , Modelos Animais de Doenças , Imuno-Histoquímica , Mucosa Intestinal/patologia , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/patologia , Camundongos , Camundongos Knockout , Proteólise , Receptores CCR2/genética
9.
J Cell Mol Med ; 23(6): 4127-4138, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30920116

RESUMO

Long non-coding RNAs (lncRNAs) have potential applications in clinical diagnosis and targeted cancer therapies. However, the expression profile of lncRNAs in colorectal cancer (CRC) initiation is still unclear. In this study, the expression profiles of lncRNAs and mRNAs were determined by microarray at specific tumour stages in an AOM/DSS-induced primary colon cancer model. The temporal expression of lncRNAs was analysed by K-means clustering. Additionally, weighted correlation network analysis (WGCNA) and gene ontology analysis were performed to construct co-expression networks and establish functions of the identified lncRNAs and mRNAs. Our results suggested that 4307 lncRNAs and 5798 mRNAs are deregulated during CRC initiation. These differential expression genes (DEGs) exhibited a clear correlation with the differential stage of tumour initiation. WGCNA results suggested that a series of hub lncRNAs are involved in regulating cell stemness, colon inflammation, oxidative stress response and cell death at each stage. Among them, lncRNA H19 was up-regulated in colon tumours and correlated with poor patient prognosis. Collectively, we have been the first to demonstrate the temporal expression and function of lncRNAs in CRC initiation. These results provide novel diagnosis and therapy targets for CRC.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , RNA Longo não Codificante/genética , Animais , Morte Celular/genética , Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Redes Reguladoras de Genes/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estadiamento de Neoplasias/métodos , Estresse Oxidativo/genética , RNA Mensageiro/genética , Regulação para Cima/genética
10.
Cancer Lett ; 448: 132-143, 2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-30771439

RESUMO

SARI (suppressor of activator protein 1, regulated by IFN) functions as a tumour suppressor and is inactivated in various cancers. However, the mechanism underlying SARI inactivation in cancer remains elusive. In this study, we detected a high level of DNA methylation of the SARI promoter and an inverse correlation between SARI promoter methylation and expression in malignant tissues from patients with colon cancer. Furthermore, we found that the SARI promoter methylation status is a prognostic indicator for patients with colon cancer. A dCas9-multiGCN4/scFv-TET1CD-sgRNA-based SARI-targeted demethylation system (dCas9-multiGCN4/scFv-TET1CD-sgSARI) was constructed to precisely and specifically demethylate regions of SARI; this system resulted in the substantial activation of SARI expression. Further in vitro and in vivo data confirmed that dCas9-multiGCN4/scFv-TET1CD-sgSARI exerts anti-tumour effects by regulating tumour proliferation, apoptosis, and angiogenesis. Collectively, specific demethylation of the SARI promoter and restoration of endogenous SARI expression by dCas9-multiGCN4/scFv-TET1CD-SARI have therapeutic applications for colon cancer and perhaps for other cancers.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Neoplasias do Colo/tratamento farmacológico , Metilação de DNA/fisiologia , Regiões Promotoras Genéticas/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...